Using Multi-Instance Hierarchical Clustering Learning System to Predict Yeast Gene Function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Multi-Instance Hierarchical Clustering Learning System to Predict Yeast Gene Function

Time-course gene expression datasets, which record continuous biological processes of genes, have recently been used to predict gene function. However, only few positive genes can be obtained from annotation databases, such as gene ontology (GO). To obtain more useful information and effectively predict gene function, gene annotations are clustered together to form a learnable and effective lea...

متن کامل

Constrained instance clustering in multi-instance multi-label learning

In multi-instance multi-label (MIML) learning, datasets are given in the form of bags, each of which contains multiple instances and is associated with multiple labels. This paper considers a novel instance clustering problem in MIML learning, where the bag labels are used as background knowledge to help group instances into clusters. The goal is to recover the class labels or to find the subcl...

متن کامل

Learning Instance Weights in Multi-Instance Learning

Multi-instance (MI) learning is a variant of supervised machine learning, where each learning example contains a bag of instances instead of just a single feature vector. MI learning has applications in areas such as drug activity prediction, fruit disease management and image classification. This thesis investigates the case where each instance has a weight value determining the level of influ...

متن کامل

A Rich Probabilistic Model to Predict Yeast Gene Function

Prediction of gene function is an important problem in the post-genome era. Traditionally, functions of unknown genes are inferred from two types of methods: one using the “guilt-byassociation” principle (e.g. [1]), and the other using features of the gene of interest (e.g. [2]). Both types of methods have shown certain success in the task. Here we aim to combine the two principles using one ri...

متن کامل

Instance Driven Hierarchical Clustering of Document Collections

The global pattern mining step in existing pattern-based hierarchical clustering algorithms may result in an unpredictable number of patterns. In this paper, we propose IDHC, a pattern-based hierarchical clustering algorithm that builds a cluster hierarchy without mining for globally significant patterns. IDHC allows each instance to "vote" for its representative size-2 patterns in a way that e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLoS ONE

سال: 2014

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0090962